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Abstract 
This article reports on the hydrometallurgical production of synthetic anatase 

from ilmenite. Mechanical activation followed by pressure leaching facilitates the 
leaching of ilmenite and the separation of titanium/iron by means of the synchronous 
hydrolysis of anatase. At 95% TiO2, the produced synthetic anatase fulfills the 
requirements for the aluminothermic production of titanium alloys.   
Keywords: ilmenite, mechanical activation, anatase process, pressure leaching 

Introduction 
Titanium is one of the ten most commonly found elements in the earth’s crust, 

together with O, Si, Al, H, Na, Ca, Fe, Mg, and K. The most abundant titanium mineral, 
ilmenite (FeTiO3), is, together with rutile (TiO2), a mass commodity of high availability.  

The first step in the production of titanium metal is to gain pure TiO2 products 
from ore concentrates containing ilmenite or rutile. The beneficiation of ilmenites 
requires pyrometallurgical or chemical process steps to separate the iron content of 
approx. 30%. The beneficiation of rutile to TiO2 concentrates is mostly done physically. 

Several different ways of separating the iron from ilmenite are known, which 
differ in their technical complexity and energy requirements. The chemical process is 
made difficult by the low solubility of ilmenite in sulphuric acid. For the production of 
pure TiO2 concentrates from ilmenites, the classic sulphate process with concentrated 
H2SO4 at < 220°C, yielding TiO2 in pigment quality, is too complex [1]. As a result, 
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apart from strictly pyrometallurgical processes [2-4], combinations of pyrometallurgical 
and hydrometallurgical processes [5-28] were developed for the production of synthetic 
TiO2 concentrates. These concentrates can be used as raw material for the sulphate 
process as well as for the chloride process. For the production of titanium metal, the 
TiO2 content of approx. 90% is insufficient.  

One possibility for the direct hydrometallurgical beneficiation of ilmenites is the 
pre-treatment of ilmenite concentrates by means of mechanical activation. First 
investigations on the solubility of ilmenites were presented in 1968 by Gock in a study 
on the mechanical activation of titaniferous magnetite [29]. Since the 1990s, more 
studies on the solubility of ilmenites after mechanical activation using different mills for 
ultrafine grinding such as vertical ball mills (attritors), planetary ball mills and drum 
mills have been published. The focus of the investigations was on the structural changes 
of ilmenite. Technical applicability was not the intention [30-38]. Mechanical activation 
in general means exposing solids to high mechanical stress, which exceeds the 
enlargement of the surfaces and causes defects in the crystalline structure leading to an 
increase in the level of enthalpy of the crystalline system. In many cases, the increase in 
the enthalpy strongly influences the reaction behaviour. The influence on the dissolving 
and leaching activities of mineral compounds with low solubility is important for 
hydrometallurgical processes. The scientific background is summarized in a few 
monographs [39-42].  

The mechanical activation of ilmenites for direct hydrometallurgical production 
of synthetic TiO2 concentrates by means of the energetically efficient vibration milling 
method could be a new concept for the use of this material in aluminothermic titanium 
alloy production. However, TiO2 contents of at least 95% TiO2 are required.  

In the following, we will report on the reaction kinetics of mechanically activated 
ilmenite during the hydrometallurgical production of synthetic TiO2 concentrates with 
anatase structure as input material for aluminothermic titanium alloy production [43].  

Experiments 
The material used was commercial ilmenite concentrate with 30.02% Ti, 34.43% 

Fe, 0.76% Si, 0.42% Al, 0.02% Cr, <50 ppm Th, <50ppm U, 7 ppm Zr, <5 ppm P. The 
particle size was 100% <0.3 mm. The diffractometer analysis also showed content of 
hematite and quartz.  

Mechanical activation took place in a full-scale eccentric vibratory mill [44-46] 
by Siebtechnik GmbH/Mühlheim Ruhr (ESM-656.0.5 ks), equipped with a 5 l satellite 
milling container for the treatment of smaller samples. With this setup it is possible to 
determine the energy requirements per ton of material input as well as the mill 
throughput for technical implementation. In order to determine the optimum activation 
conditions, parameter studies were carried out with mill feed quantities varying between 
100 and 300 g per load and activation times ranging from 15 to 60 minutes. The 
amplitude or frequency of the mill was kept constant at 20 mm or 960 min-1. Steel balls 
with a diameter of 30 mm were used.  

The degree of activation was set as the ratio I/I0 at lattice plane 104 of ilmenite 
after and before mechanical activation. Every degree of activation has a reproducible 
reaction kinetic behaviour.  

The leaching tests were carried out in an agitator autoclave by Deutsch & 
Neumann GmbH, Berlin with a reaction volume of 2 L. The solvent used was diluted 
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H2SO4. Stirring occurred at 250 min-1 and the temperatures were between 100 and 
150°C. Further parameters were the initial acid concentration (10-30% H2SO4), the 
leaching time (15-60 min), Fe addition (6-16%) and the solids content per litre (50-200 
g/l). An ICP-OES (Vista-MPX, Varian, Australia) was used for analytical 
measurements. The solutions as well as the precipitation products (anatase and 
copperas) were analysed. In addition, X-ray diffraction patterns (Philips X´Pert PW 
3040 MPD, Germany) and scanning electron microscope image (Zeiss DSM 982 
Gemini, Germany) were taken.  

Results 
The most important parameters influencing the hydrometallurgical processing of 

mechanically activated ilmenite are described below.  

Influence of mechanical activation 
The determination of the degree of activation was based on the treatment 

duration of a 100 g specimen. The determined degree of activation for the performed 
milling tests as a function of the milling time is shown in Figure 1. It is obvious that the 
ilmenite structure is strongly strained by the mechanical activation. The same behaviour 
was also observed in the case of thermal treatment of ilmenite in a muffle furnace [29]. 
At > 800°C in the presence of oxygen, ilmenite converts into rutile and hematite. This 
process is proven by the measurements at lattice plane 104.  
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Fig. 1. Degree of activation I/I0 of ilmenite as a function of the activation time measured 
at lattice plane 104 at 2θ=32.7o  

 

The influence of the activation time on the TiO2 extraction in the precipitation 
product is shown in figure 2. The leaching tests confirm the dependence on the degree 
of activation. A critical point is that after a mere 15 minutes of activation most of the 
ilmenite has been dissolved. This finding is extremely interesting from a technical point 
of view. The hydrolytic precipitation of anatase is influenced by an initial solution 
accelerated with increasing activation.  
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Fig. 2. Influence of the activation time of ilmenite on the precipitation of anatase; 

leaching temperature 150°C, solids content 50 g/l, leaching time 60 min, 30% H2SO4, 
12% Fe-powder  

Influence of temperature 
At temperatures > 50°C and a pH value > 1.5 the hydrolysis from titanyl sulphate 

solutions to TiO2 is triggered. In the investigated temperature range, the dissolution of 
ilmenite and the simultaneous precipitation of TiO2 take place in parallel. If the 
hydrolysis conditions are less than perfect, a partial precipitation of TiO2 will occur. 
The hydrolytic conditions are influenced positively, if the dissolution of ilmenite takes 
place at temperatures > 100°C under steam pressure in an autoclave.  

The variation of the temperature in the range of 100-150°C yielded the reaction 
process shown in figure 3.  
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Fig. 3. Influence of the leaching temperature on the precipitation of anatase; solids 
content 50 g/l, 15 min eccentric vibratory milling, leaching time 60 min, 30% H2SO4, 

6% Fe- powder 
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The curve for the total iron extraction in the product reflects the dissolution of the 
ilmenite. At a leaching temperature of 150°C and a leaching time of 60 minutes, 
approximately 86% of the ilmenite dissolves. Parallel to the dissolution of the iron, the 
titanium is being dissolved and the hydrolysis of the generated titanyl sulphate solution 
to anatase takes place following the almost complete dissolution of the ilmenite. At 
150°C only traces of titanium remain in the solution. Under the same temperature 
conditions the amount of Fe powder, used as a reduction agent, was increased to 10%. 
Under these conditions, extraction was already largely achieved at a leaching 
temperature of 120°C. The TiO2 extraction in the product is approx. 86% (see figure 4). 
The optimum reaction temperature is thus influenced by the amount of reduction agent. 
As proven in point: Influence of Fe-additive, the addition of Fe accelerates the initial 
reaction of the leaching.  
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Fig. 4. Influence of the leaching temperature on the precipitation of anatase upon 
increasing the amount of reduction agent from 6 to 10% Fe-powder; solids content 

50 g/L, 15 min eccentric vibratory milling, leaching time 60 min, 30% H2SO4 

Influence of the initial acid concentration 
The extraction of ilmenite using the sulphate process requires approximately 2 

tonnes of concentrated sulphuric acid per tonne of ilmenite. The generated extraction 
cake is then leached with water. The content of free acid must guarantee a pH value < 
1.5. As a consequence, the direct leaching of ilmenite performed here requires a 
solids/acid ratio of at least 1:2. Figure 5 shows the influence of the initial acid 
concentration on the solution of activated ilmenite using 10% acid. This corresponds to 
a solids/acid ratio of 1:2, and a 77% solution of ilmenite after a leaching time of 60 
minutes. Increasing the initial acid concentration to 20%, this corresponds to a ratio of 
1:4, the ilmenite almost completely dissolves. From a processing point of view, 
continuous operation requires keeping the acid in circulation and replacing the spent 
acid. It is in this way that the process acid always has a preparatory titanyl sulphate 
content. 

As a consequence, it shows that the initial acid concentration has a direct 
influence on the rate of ilmenite dissolution. For technical dimensioning, the ratio of 
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ilmenite to acid should be < 1:4. An excessively high amount of acid would complicate 
the hydrolytic conditions. 
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Fig. 5. Influence of the initial acid concentration on the precipitation of anatase; solids 

content 50 g/l, 15 min eccentric vibratory milling, leaching temperature 150°C, 
leaching time 60 min, 10% Fe-powder 

 

Influence of the leaching time 
The leaching time was varied in a range from 15 to 90 minutes. A general fact is 

that the dissolution of ilmenite takes place at a fast rate. Figure 6 shows the dissolution 
of ilmenite in a magnitude of approx. 64% (related to the dissolution of iron) at a 
leaching time of 30 minutes and a reaction temperature of 120°C.  

When increasing the reaction temperature to 150°C, again, approx. 86% of the 
ilmenite dissolves after a leaching time of 30 minutes. Figure 6 also shows that the 
leaching time has a relatively low impact on the hydrolysis. After 60 minutes, approx. 
93% of the anatase has precipitated and the Fe content in the anatase concentrate is 
reduced to < 6%. The generated product is a synthetic TiO2 concentrate of relatively 
high purity. 

If the temperature is lowered from 150°C to 120°C, it is impossible to produce a 
high-quality synthetic anatase concentrate. 

Influence of the Fe-additive 
As proven in point: Influence of temperature, regarding the influence of the 

leaching temperature, the addition of Fe influences the initial rate of the ilmenite 
dissolution. This correlation is shown in figures 3 and 4.  

Figure 7 shows that after a leaching time of 60 minutes the influence of the Fe-
additive is no longer identifiable.  
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Fig. 6. Influence of the leaching time and the temperature on the precipitation of 
anatase; solids content 50 g/l, 15 min eccentric vibratory milling, 30% H2SO4,  

6% Fe-powder 
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Fig. 7. Influence of the Fe-additive on the precipitation of anatase; leaching 

temperature 150°C, 15/30 min eccentric vibratory milling, solids content 50 g/L, 
leaching time 60 min, 30% H2SO4 

Influence of the solids content 
Solids content between 50 and 200 g/L were investigated (Figure 8). In order to 

show the influence of mechanical activation on the leaching with different solids 
contents of FeTiO3, two test series with milling times of 15 and 30 minutes were carried 
out. 

As expected, the residual iron content in the product increases with increasing 
solids content per litre at a lower activation time (<15 minutes). That means the ilmenite 
dissolves at a lower rate. For the technical process, this result is disadvantageous. 
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Fig. 8. Influence of the solids content on the precipitation of anatase; leaching 

temperature 150°C, 15/30 min eccentric vibratory milling, 30% H2SO4, 6% Fe-powder 

Products 
Table 1 shows the composition of the products produced using this anatase 

process: synthetic anatase and copperas. 

Table 1: Composition of the products produced using the anatase process: synthetic 
anatase and copperas 

Specimen Al2O3 
[%] 

CaO 
[%] 

Fe2O3 
[%] 

P2O5  
[%] 

SiO2  
[%] 

TiO2  
[%] 

ZrO2 
[%] 

Anatase 0.34  1.20  3.32  0.007 1.70  95.23  0.004 
Copperas 0.88 0.32 52.48  n.d 0.76 0.45 0.015 

 
Fig. 9. Scanning electron microscope image of the produced synthetic anatase 

A scanning electron microscope image of the synthetic anatase shows a narrow 
particle size distribution with an x50 value of 0.99 µm, (see figure 9). The X-ray analysis 
of the anatase product (JCPDS 021-1272) (see figure 10) shows traces of rutile. The 
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crystallised copperas, shown in the X-ray diffraction pattern in figure 11, is 
characterised by high purity. It is the compound FeSO4.4H2O (JCPDS 016-0699). 
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Fig. 10. X-ray diffraction pattern of the produced synthetic anatase 
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Fig. 11. X-ray diffraction pattern of the produced copperas 
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Process evaluation 
As already mentioned in the introduction, none of the investigations that are 

known from the literature on the leaching of ilmenites upon mechanical activation have 
led to any kind of technical applicability [30-38]. In different mills, milling times of up 
to 200 hours were required and, with one exception, the solids content for the leaching 
process was only 10 g/l [35]. The operating parameters are summarised in table 2. 
Hydrolysis products were gained in only two cases [32, 36]. 

The operating conditions determined in this investigation fulfil the requirements 
for a technical implementation of the process for the production of a synthetic TiO2 
product, which is suitable for use in aluminothermic alloy production. Figure 12 shows 
the process flow chart on the coupling of hydrometallurgical processing of ilmenites 
into synthetic TiO2 concentrate (anatase) with the aluminothermic production of TiAl 
alloys. 

 

Table 2: Operating parameters from the literature on the mechanical activation of 
ilmenite for direct leaching with H2SO4. 

Bibliography Mill t 
[h] 

H2SO4 
[%] 

c 
[g/l] 

T 
[oC] 

TL 
[h] 

m 
[%] Product 

Welham, N., 
Llewellyn, N.J., 

(1998), [30] 
Vertical ball mill 0.25 -

100 50 10 up to 120 0.5 - 8 Ti: 90 solution 

Chen, Y. et al. 
(1999), [31] 

Vertical ball mill, 
in air and 
vacuum 

10 - 
200 50 10 100 2 

Ti: 100 
(vacuum) 

Ti: 70 (air) 
solution 

Li, Ch. et al. 
(2008), [32] Vertical ball mill 4 5, 10, 15 10 100 0.25 - 4

Ti: 85 
Fe: 100 
(0.25 h) 

TiO2 (95%) 
rutile 
Fe2O3 
(0.5%) 

SO3 (4.1%) 
Li, Ch. et al. 
(2006), [33] 

Planetary ball 
mill 

0.5 -
10 50 10 up to 100 0.25 - 2 Ti: 82 solution 

Sasikumar, C. 
et al. (2004), 

[34] 

Planetary ball 
mill 

0.5; 
1.5;4 50 10 up to 120 0.5 - 4 Ti: 65 

Fe: 90 solution 

Sasikumar, C. 
et al.  (2007), 

[35] 

Planetary ball 
mill 

0.5; 
1.5; 4 16-75 111-

167 up to 120 0.5 - 4 Ti: 40 
Fe: 78 solution 

Li, Ch. et al. 
(2007), [36] 

Ball mill 
in air and 
vacuum 

2, 4, 
6, 10 5, 10, 20 10 up to 100 0.25 - 4

Ti: 90 
Fe: 90 
(0.5 h) 

TiO2 rutile 
Fe2(TiO3)3 

pseudorutile 

Li, Ch. et al. 
(2006), [38] 

Vertical ball mill 
simultaneous 
milling and 

leaching (attritor) 

0.5 - 4 50 26 up to 120 0.5 - 4 Ti: 77 solution 

t – milling time; c – solids content; TL – leaching time; m - recovery 
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Fig. 12. Process flow chart on the coupling of hydrometallurgical processing of 

ilmenites with the aluminothermic production of TiAl alloys. 

The energy required per tonne of synthetic anatase is expected to be 506 kWh. 
Based on current costs for energy, this corresponds to approx. 212 euro per tonne of 
synthetic anatase. The use of untreated ilmenite in aluminothermic processes would 
result in the production of ferrotitanium. The reduction of by-components in ilmenite is 
more favourable than the reduction of titanium dioxide because of their lower oxygen 
affinity. This investigated pretreatment of ilmenite with mechanical activation and 
leaching enables new cost-effective production methods for titanium based alloys. Due 
to the increase of TiO2 content up to 95% the usage of synthetic anatase in 
aluminothermic reaction is feasible and attractive [47]. So far, only high purity rutile 
pigments have been used for the aluminothermic production of TiAl alloys [48-50]. The 
potential reduction reactions of by-components have specific enthalpies that must be 
taken into account for the thermochemical calculations of the aluminothermic reaction 
mixture. The effect of grain size and morphology on the aluminothermic process is not 
predicable and has to be investigated in-depth. At 95% TiO2, the synthetic TiO2 
concentrate (anatase) that we produced meets the requirements for aluminothermy in 
order to produce Titanium based alloys instead of Ferro-based alloys from ilmenite.  

Summary 
The reaction kinetic conditions for the processing of mechanically activated 

ilmenite by means of direct hydrometallurgical conversion in autoclave to synthetic 
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anatase at 150°C with 30% H2SO4 were investigated and the parameters for technical 
implementation determined. Based on the found operating data, a process flow chart on 
the coupling of the hydrometallurgical processing of mechanically activated ilmenite 
into synthetic anatase with the aluminothermic production of TiAl alloy products was 
established. 

For the first time ever, this concept supplies a suitable TiO2 raw material for 
aluminothermic processes in order to produce Titanium alloys from ore concentrates by 
means of direct hydrometallurgical processing of ilmenites after mechanical activation. 
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